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Abstract. We introduce a Hartree-Fock-Bogoliubov mean-field approach to treat the problem of proton
emission from a deformed nucleus. By substituting a rigid rotor in a particle-rotor model with a mean field,
we obtain a better description of experimental data in 141Ho. The approach also elucidates the softening
of kinematic coupling between particle and collective rotation, the Coriolis attenuation problem.

PACS. 23.50.+z Decay by proton emission – 21.60.-n Nuclear structure models and methods

Proton emission is a weak single-particle (s.p.) process
with widths about 20 orders of magnitude smaller than the
usual MeV scale of other nuclear interactions. This makes
observation of proton radioactivity an ideal and power-
ful tool for non-invasive probing of the single-proton in-
medium dynamics. Recent studies have already explored
numerous nuclear mean-field properties of proton emitters
including deformations, vibrations [1] rotations [2], pairing
and other many-body correlations [3,4].
In this work, using proton emission from deformed nu-

clei, we concentrate on an old problem known as Coriolis
attenuation problem [5] in the particle-rotor model (PRM).
Recent studies of proton decay [2,4] highlight the same
lack of kinematic coupling between the particle and the
deformed rotor as was inferred decades ago from obser-
vations of the energy spectra of odd-A nuclei [5,6]. The
second purpose of this work is to gain an understanding
of and to develop a better theoretical technique to de-
scribe particle motion in the deformed mean-field. Here
the notion of a core as a rigid rotor is inadequate and, as
emphasized in numerous works [5,7,8], the residual two-
body interaction and collective modes are important parts
of the dynamics.
We consider an axially-symmetric deformed proton

emitter and assume that the total Hamiltonian is com-
posed of a collective Hcoll = R2

⊥/2L and intrinsic parts

Hintr =
∑

Ω

εΩ a†ΩaΩ −
1

4

∑

ΩΩ′

GΩΩ′a†
Ω̃
a†Ω aΩ′aΩ̃′ . (1)

Here R denotes the rotor angular momentum, involving
only the part perpendicular (⊥) to the symmetry axis,

and a†Ω and aΩ stand for s.p. creation and annihilation
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operators of state |Ω) in the deformed body-fixed mean-
field potential. Nuclear pairing involves body-fixed time-
reversal s.p. states |Ω) and |Ω̃) and describes the residual
two-body interaction. In contrast to the usual PRM this
model assumes some odd number of valence particles. In
the limit where the valence space covers the entire nucleus
the collective rotor variables become redundant.
Kinematic coupling between the intrinsic system and

collective rotor occurs due to conservation of total angular
momentum I = R+ j, where j is the angular momentum
of the valence particles. Components of this operator can
be expressed in the a intrinsic body-fixed basis as

j3 =
∑

Ω

ΩΩa
†
ΩaΩ , j+ =

∑

ΩΩ′

jΩΩ′ a†ΩaΩ′ , (2)

similarly for j− = j†+. The coefficients jΩΩ′ = (Ω|j+|Ω
′)

are obtained using expansion of states |Ω) in spherical
basis. Excluding a trivial rotational part from the total
Hamiltonian H = I2/(2L) +H ′, we obtain

H ′ =
1

2L
(j2 − 2j23)−

1

2L
(j+I− + j−I+) +Hintr, (3)

which is to be solved via many-body techniques using basis
states formed as products of Wigner DI

MK(ω)-functions
of collective angles ω, and any complete set of many-body
intrinsic states such as Slater determinants.
Here we implement a Hartree-Fock-Bogoliubov (HFB)

approach that allows one to determine a s.p. mean-field,
which is a combination of the rotor degrees of freedom and
even-particle valence system, and absorbs in the best way
kinematic couplings and residual nucleon-nucleon correla-
tions. By making a Bogoliubov transformation to quasi-

particles αi =
∑

Ω

(

uiΩaΩ + viΩa
†
Ω

)

and with the require-
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Fig. 1. The average Coriolis suppression factor as a function
of the pairing gap in 141Ho.

ment that the elementary quasiparticle excitations are sta-
tionary we obtain the usual HFB equations

uiΩei +∆Ωv
i
Ω

∗
=
∑

Ω′

εΩΩ′uiΩ′ ,

viΩei +∆Ωu
i
Ω

∗
= −

∑

Ω′

εΩΩ′viΩ′ . (4)

Here in full analogy to PRM the diagonal part of the s.p.
potential is given by the usual s.p. energy corrected with
the recoil term and decoupling factor ∆E [5]

εΩΩ = εΩ +
1

2L

(

(Ω|j2|Ω)− 2Ω + δΩ,1/2 ∆E
)

. (5)

The off-diagonal term in eq. (4) violates deformation align-
ment, the K-symmetry, which manifests itself through
non-vanishing average mean-field expectations 〈j+〉 =
〈j−〉 = 〈j〉 while 〈j3〉 = 0. This average mean-field value
enters the off-diagonal s.p. potential

εΩ+1,Ω = −
1

2L

[

√

(I −Ω)(I +Ω + 1)− 〈j〉
]

jΩ+1Ω ,

(6)
and is to be determined in a self-consistent solution

〈j〉 = 2
∑

i, Ω>0

jΩ+1,Ω viΩ+1v
i
Ω . (7)

This is analogous to non-conservation of particle number
N , a common situation in the HFB approach. Particle
number is restored on average via the introduction of a
chemical potential H ′ → H ′ − µN, so that the pairing
gap and chemical potential in eq. (4) are self-consistently
determined

∆Ω = −
1

2

∑

Ω′

GΩΩ′

∑

i

uiΩ′viΩ′ , N = 2
∑

Ω>0

∑

i

viΩ
∗
viΩ .

(8)
The term 〈j〉 in eq. (6) is due to HFB linearization

of the recoil operator j2 ∼ 〈j〉(j+ + j−)/2 + Ω2 which,

Table 1. Comparison of different theoretical results and ex-
perimental data for the case of 141Ho proton emission.

Γ0 (×10
−20 MeV) Γ2/Γ0(%)

PRM RHBF PRM RHFB

Adiabatic 15.0 15.0 0.73 0.73

Coriolis 1.4 5.9 1.8 1.2

Coriolis+pairing 1.7 7.0 1.7 0.3

Experiment 10.9± 1.0 0.71± 0.15

besides acting on an odd particle, also perturbs an even-
particle mean-field, thus producing a suppression of the
Coriolis mixing. The Coriolis interaction takes the form
−(I− 〈j〉)⊥j/L similar to the Routhian in the Cranking
Model [5], and is suppressed. This is in contrast with the
PRM, where by definition the rotor is rigid and 〈j〉 = 0.

The quantity ξ =
(

1− 〈j〉/
√

I(I + 1)− 〈Ω2〉
)

is the av-

erage suppression factor; for the case of 141Ho (see be-
low), it is shown as a function of pairing gap in fig. 1. The
idea to phenomenologically substitute the spin of the rotor
R = (I−j)⊥ for the operator I in order to explain Coriolis
attenuation was suggested in [9], and contributions from
the j2 operator in the mean-field approach are discussed
in [10]. Other contributions coming from non-rigidity of
the core are also considered [5,8].
We apply this approach to the proton emitter 141Ho

where partial decay widths Γ0 for decay to the 0
+ ground

state and Γ2 to the 2
+ first excited state in 140Dy

are known from experiment. The spectrum of 140Dy is
used to determine deformation and moment of inertia.
The valence space is limited to a negative parity sub-
space coming from spherical h11/2 orbital, but parti-
cle depletion due to pair excitation onto positive par-
ity states is included. The decay amplitudes computed
using appropriate deformed Woods-Saxon potential and
expressed via normalization of the wave function [2]

AΩlj(k) = φΩlj(r)/Glj(kr)
∣

∣

∣

r=∞
, where Glj is the irregu-

lar Coulomb function. The decay width is given by [4]

Γ = k
µ

2(2R+1)
2I+1

∣

∣

∣

∑

Ω>0 C
IK
jK,R0 u

i
ΩA

Ω
lj

∣

∣

∣

2

, where C is a

Clebsch-Gordan coefficient and the uΩ factors come from
the solution of eq. (4). The results of this calculation, la-
beled as RHFB, are compared with PRM and experiment
in table 1. The Coriolis attenuation problem is transpar-
ent; e.g., for Γ0 (first column), the unjustified theoretically
adiabatic limit (L → ∞) overestimates experiment. When
improving this by introduction of Coriolis mixing which is
softened by pairing correlations the result extremely over-
reduces Γ0. The HFB calculation shown in table 1 is lim-
ited to a very small valence space, but gives a reasonable
description, and most importantly, as a better founded ap-
proach clarifies the reason for weakened Coriolis coupling.
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